A proximal cutting plane method using Chebychev center for nonsmooth convex optimization

نویسنده

  • Adam Ouorou
چکیده

An algorithm is developped for minimizing nonsmooth convex functions. This algortithm extends Elzinga-Moore cutting plane algorithm by enforcing the search of the next test point not too far from the previous ones, thus removing compactness assumption. Our method is to Elzinga-Moore’s algorithm what a proximal bundle method is to Kelley’s algorithm. As in proximal bundle methods, a quadratic problem is solved at each iteration, but the usual polyhedral approximation values are not used. We propose some variants and using some academic test problems, we conduct a numerical comparative study with three other nonsmooth methods. Mathematics Subject Classification (2000) 90C30, 90C25, 65K05

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Solving Nonlinear Multicommodity Flow Problems by the Proximal Chebychev Center Cutting Plane Algorithm

The recent algorithm proposed in [15] (called pcpa) for convex nonsmooth optimization, is specialized for applications in telecommunications on some nonlinear multicommodity flows problems. In this context, the objective function is additive and this property could be exploited for a better performance.

متن کامل

A doubly stabilized bundle method for nonsmooth convex optimization

We propose a bundle method for minimizing nonsmooth convex functions that combines both the level and the proximal stabilizations. Most bundle algorithms use a cutting-plane model of the objective function to formulate a subproblem whose solution gives the next iterate. Proximal bundle methods employ the model in the objective function of the subproblem, while level methods put the model in the...

متن کامل

Globally Convergent Cutting Plane Method for Nonconvex Nonsmooth Minimization

Nowadays, solving nonsmooth (not necessarily differentiable) optimization problems plays a very important role in many areas of industrial applications. Most of the algorithms developed so far deal only with nonsmooth convex functions. In this paper, we propose a new algorithm for solving nonsmooth optimization problems that are not assumed to be convex. The algorithm combines the traditional c...

متن کامل

Nonconvex Nonsmooth Minimization via Cutting Planes and Feasible Direction In- terior Point Method

Nowadays, solving nonsmooth (not necessarily differentiable) optimization problems plays a very important role in many areas of industrial applications. Most of the algorithms developed so far deal only with nonsmooth convex functions. In this paper, we propose a new algorithm for solving nonsmooth optimization problems that are not assumed to be convex. The algorithm combines the traditional c...

متن کامل

A Feasible Directions Method for Nonsmooth Convex Optimization

We propose a new technique for minimization of convex functions not necessarily smooth. Our approach employs an equivalent constrained optimization problem and approximated linear programs obtained with cutting planes. At each iteration a search direction and a step length are computed. If the step length is considered “non serious”, a cutting plane is added and a new search direction is comput...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Math. Program.

دوره 119  شماره 

صفحات  -

تاریخ انتشار 2009